802.11 Wireless Standards Explained

The explosion of mobile devices continues to drive not only digital transformation of businesses, but also how those businesses’ employees work. According to Gartner, in 2017, 50% of employers required employees to supply their own devices for work and 89% of employees accessed business applications through personal mobile devices.

Think about it: what device do you have with you all the time? Your phone. But you probably also have a tablet and laptop that you use to access work applications. Most people have three mobile devices and Wi-Fi is a critical component of how we connect at the edge, whether that edge is the office, your car, the airport or even your kitchen table

Mobility is changing how we work and where we work. The base of that transformation has been the IEEE wireless standards: from the original standard, which left many of us looking at a spinning wheel and waiting for connectivity, to the latest proposed standard that will give us all simultaneous wireless access. End-users now demand anytime, anywhere, any device connectivity- fast and with high availability. The question is, can your wireless network provide that?

This tutorial will decipher the alphabet soup of the most common IEEE 802.11 standards and describe how they have evolved over the years and what standards your enterprise needs to enable digital transformation.

 

IEEE 802.11 Standards
Standard Released Frequency (GHz) Speed Range
IEEE 802.11 1997 2.4 2 Mbps Indoors: 20 m
Outdoors: 100 m
IEEE 802.11a 1999 5/3.7 54 Mbps Indoors: 35 m
Outdoors: 120/5000 m
IEEE 802.11b 1999 2.4 11 Mbps Indoors: 35 m
Outdoors: 120 m
IEEE 802.11g 2003 2.4 54 Mbps Indoors: 38 m
Outdoors: 140 m
IEEE 802.11n 2009 2.4/5 600 Mbps Indoors: 70 m
Outdoors: 250 m
IEEE 802.11ac 2013 2.4/5 450 Mbps/1300 Mbps Indoors: 35 m
IEEE 802.11ad (WiGig) 2012 60 6.7 Gbps 3.3 m
IEEE 802.11ah (HaLow) 2016 0.9 347 Mbps 1 km
IEEE 802.11ax 2019 est. 2.4/5 GHz 450 Mbps/10.53 Gbps TBD


802.11/a/b
. This was the original standard created in 1997. It only provided data throughput of 2 Mbps in the 2.4 GHz frequency, which was too slow for most applications. The A version (5 Ghz) boosted data rates to 54 Mbps. The B version (1999) went back to the 2.4 GHz frequency and boosted data rates to 11 Mbps. Your first home router was probably 802.11b.

802.11g. Released in 2003, this was the next significant wireless standard with speeds of 54 Mbps in the 2.4 GHz frequency making it backward compatible with 802.11b.

802.11n. Approved in 2009, 802.11n enables operation in both the 2.4 and 5 GHz frequencies, a game changer at the time. It was the first standard to use MIMO (Multiple In, Multiple Out) and offered better speed, 300 Mbps, better range, more resistance to interference and backward compatibility with 802.11b/g.

802.11ac. This is what we use now for Wi-Fi connectivity. Introduced in 2013, AC provides speeds of 1300 Mbps in the 5 GHz frequency and 450 Mbps speeds in the 2.4 GHz frequency. 802.11ac access points are widely used in large enterprise networks to complement DAS and small cell wireless networks. 802.11ac access points also provide the primary wireless connectivity in smaller businesses, retail establishments, and most likely, your home.

802.11ax. Expected to be released in 2019, 802.11ax is a game changer in terms of Wi-Fi. AX is expected to be anywhere from four to ten times faster than 802.11ac, with a maximum data rate of 1.3 Gbps. AX operates in both the 2.4 GHz and 5 GHz frequencies and is backward compatible with 802.11ac/n. To achieve the significant speed and capacity increase, AX will layer MU-MIMO (multi-user, multiple-input, multiple-output) with orthogonal frequency-division multiple access technology. This enables a large number of devices to use the same access point at the same time rather than sequentially. AX is designed for high-density digital edge environments and will be able to accommodate large numbers of users and IoT devices.

Time to upgrade?
If you’re thinking about your mobile-first strategy, talk to us. We can help you make mobility happen with the right intelligent edge foundational technology that connect people and devices, drive collaboration and enable anytime, anywhere positive end-user experiences. When you enable mobility, you enable connectivity at the digital edge.

Learn more at BlackBox.co.uk

Leave a Reply